首页 >>  正文

三极管的原理

来源:www.zuowenzhai.com    作者:编辑   日期:2024-06-15
三极管的详细工作原理

三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种电流控制电流的半导体器件。

三极管的工作原理分为理论原理和放大原理两方面(具体如下):
理论原理:
晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e (Emitter)、基极b (Base)和集电极c (Collector)。如右图所示

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Eb。

在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)及基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流了。

由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电极电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得:
Ie=Ib+Ic
这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:
β1=Ic/Ib
式中:β1--称为直流放大倍数,
集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:
β= △Ic/△Ib
式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。
三极管的电流放大作用实际上是利用基极电流的微小变化去控制集电极电流的巨大变化。
三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。

放大原理:
1、发射区向基区发射电子
电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。

2、基区中电子的扩散与复合
电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。
3、集电区收集电子
由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。


晶体三极管具有放大、开关、振荡、混频、频率变换等作用,通常晶体三极管可以处理的功率至几百W,频率至几百MHz左右。

这样的晶体三极管是在一个本征半导体中由三层n型半导体和p型半导体构成的。

本章学习晶体三极管所具有的NPN型和PNP型结构以有晶体三极管的命名方法,并且从称为基极、集电极、发射极的三个电极中流过的电流值来研究晶体三极管中电流的流动方法和作用。然后,为了能够正确地作用晶体三极管,对晶体三极管的最大额定值、晶体三极管上施加的电压和电流的关系等进行分析。

2.1 晶体三极管是P型和N型半导体和有机组合

2.1.1 晶体三极管的各种各样形状和名称

晶体三极管有三只脚,有的金属壳相当于其中一只脚。如图2.1所示,对应于不同的用途,有各种各样形状的三极管。另外,晶体三极管的名称根据JIS C 7012,按图2.3所示那样决定。从晶体三极管的名称,我们可以了解其大致的用途和结构。

2.1.2 晶体三极管的结构和电路符号

晶体三极管按结构粗分有npn型和pnp型两种类型。

Npn型如图2.2(a)所示,两端是n型半导体,中间是p型半导体。Pnp 型如同图(b)所示,两端是p型半导体,中间是n型半导体。

在图2.2(a)、(b)中,被夹在中间的p型以及n型半导体部分,宽度只有数微米程度,非常的薄,这一部分称为基区(base:B)。夹住基区的两个半导体中一个称为发射区(emitter:E),另一个称为集电区(collector:C)。还有,发射区和集电区,例如在npn型的情况下,虽然都是n型的,但发射区与集电区相比,具有杂质浓度高出数百倍,并且交界面面积小等在结构上的不同。

同图(c)、(d)是npn型以及pnp型晶体三极管的电路符号。发射极中电流的流向用箭头表示,当为npn型时箭头向外,当为pnp型时箭头向内。

2.2 晶体三极管究竟起着什么样的作用

2.2.1 对晶体三极管一加上电压,其作用就明白了

晶体三极管的工作原理
图2.4所示的是通过在晶体三极管的基极B、集电极C、发射极E上施加电压,来观察电压和电流关系的电路。

(1) 基极电流IB不流通时 在图2.4中,开关S一断开,则由于基极开路,所以IB(基极电流)就不流通。这时只对晶体三极管的C、E间施加电压VCE(集电极电压),观察IC(集电极电流)、IE(发射极电流)的变化,结果如表2.1所示。

(2) 基极电流流通时 在图2.4中,开关S一闭合,则由于B、E间加有电压,所以基极电流IB流通。这时,对应于VCE和IB的变化,IC和IE的变化如表2.2所示。

(3)从表2.1、2.2的结果,可以看出晶体三极管具有以下的工作原理:

① 即使加有集电极电压,但在基极电流不流通时,集电极电流、发射极电流也都不流通。这样的状态称为晶体三极管的截止(OFF)状态。

② 加上集电极电压,由基极电流的微量流通,在集电极可获得大的电流流通,这样的状态称为晶体三极管的导通(ON)状态。

③ 基极电流流通时,即使改变集电极电压的大小,集电极电流的大小也不大变化。

④ 使基极电流产生微小的变化,就可以使得集电极电流产生较大的变化。

⑤ 基极电流与集电极电流之和变成发射极电流,因此,下面的关系式成立。

IE = IB + IC

(发射极电流)=(基极电流)+(集电极电流)

(b) 晶体三极管的作用

基极电流IB、集电极电流IC,也分别称为输入电流和输出电流,输出电流与输入电流相比有相当的增大,此现象称为放大。

这里,IC与IB的比称为直流电流放大倍数hFE,如下式所示:

晶体三极管的直流电流放大倍数的数值通常大多在50~1000左右的范围内。因此,根据(3)中的第①、②条,晶体三极管具有在ON,OFF状态间转换的开关作用和放大作用(参照图2.5)。

2.2.2 晶体三极管中电子和空穴的运动

根据基极电流的有无,集电极中有无电流流通的原因在于晶体三极管中电子与空穴的运动。

基极电流不流通时
如图2.7所示,由于在C、B之间加上了反向电压,所以在C、B的pn结中的集电区域内的电子被E2的正电压吸引。因此,产生了耗尽层,没有从集电极向发射极的电子和空穴的移动,因而无电流流通。

(b) 基极电流流通时

如图2.8所示,由于在B、E之间加上了正电压,所以发射极区内的电子因E1的负电压被排斥,与进入基区的空穴结合。因为由于结合消失的电子,从电源E1的阴极得到补充,所以B、E之间电流流通。

当发射区的电子流入基极时,由于基区极薄,作为结合对象的空穴很少,因此电子中的大部分穿过基区进入集电区。然后一边扩散一边被E2的正电压吸引。

像这样,发射区的电子借助于施加在基极的正电压的力量,可将多余的电子送往集电区。即可以有较大的集电极电流流通。

2.2.3 晶体三极管电压的施加方法

到目前为止,我们叙述了有关npn型晶体三极管的工作原理,对pnp型若以空穴的运动为中心来考察的话,也是一样的。并且,为了使晶体三极管正常工作,若是npn型管,则如图2.8和图2.6(a)那样,若是pnp型管则如图2.6(b)那样,分别在B、E间加上正电压,在C、E间加上反向电压。即加上与发射极的箭头方向一致的两个电压。

2.3 晶体三极管的使用方法

2.3.1 为了不毁坏晶体三极管要遵守最大极限值

晶体三极管使用时与二极管一样,对于电压、电流、功率、温度等都有最大极限值,因为即使是瞬间超过所规定的最大极限值,管子也立即毁坏,所以使用时必须十分注意。晶体三极管的最大极限值有如下的一些参数(参照表2.3)。

(a)集电极·基极间电压VCBO

如图2.10(a)所示,发射极开路,集电极-基极间的电压不断加大,则晶体三极管发生毁坏式的雪崩现象,集电极电流IC突然流出(参照同图(b))

这时的电压称为VCBO,V是voltage(电压),C是集电极,B是基极,O是指C、B以外的电极即E为open(开路)的意思。VCBO的值越高越好,选择晶体三极管时,VCBO大约为所使用电源电压的两倍的管子较好。还有,同图(c)表示的是pnp型的情况。

集电极·发射极间电压VCEO
是基极开路时集电极-发射极间的电压,与VCBO的情况一样,是集电极电流突然流出时所对应的电压。即VCEO表示集电极·发射极间的耐压,通常,或与VCBO相等,或较其还要小。

发射极·基极间电压VEBO
是集电极开路时发射极-基极间的电压,是发射极电流突然流出时所对应的电压。即若将发射极-基极间作为pn结型二极管考虑,由VEBO就相当于二极管的反向耐压,表示发射极-基极间的耐压。

(d ) 最大允许集电极电流IC

是能够流过集电极的最大直流电流,又是交流电流的平均值。在选择晶体三极管时,选用额定值大约为通常使用状态最大电流的两倍以上的管子为好。特别是功率晶体三极管,绝不允许瞬间最大电流超过额定值。

(e) 最大允许集电极耗散功率PC

是集电极-发射极间消耗的功率,为集电极电流IC与集电极-发射极间电压VCE的乘积,即将PC=ICVCE称为集电极耗散功率。由于集电极的耗散功率在集电极的pn结内转换为热,导致晶体三极管内部温度上升,会烧坏管子(参照图2.11)。

这里,有关PC必须注意的问题是即使PC在额定值以内,但IC和VCE也不能超过其各自的额定值。例如,图2.12为晶体三极管2SC1815的情况,虚线表示PC和IC、VCE的最大极限,使用时绝不能采用虚线以下部分的值。

并且集电极的功耗还与周围温度Ta有关。即晶体三极管自身一被加热,周围的温度就上升,就导致集电极电流增加,晶体三极管则变得更热。如此反复地恶性循环称为热击穿,最终导致管子毁坏(参照图2.13)。因此,特别是对于功率三极管,散热板使用铝板和铁板制成。

还有,到目前为止讨论的周围温度通常为25○C,在小型晶体三极管的场合,不需要散热板。

但是,周围温度一变为25○C以上,散热效果就变差,晶体三极管所能允许的集电极功耗的值如图2.14所示变得小了。因此,小型晶体三极管的场合,最好选择晶体三极管的电源电压和使用时集电极电流的乘积在最大允许集电极功耗的一半以下。

(f) 结温Tj

是能够使晶体三极管正常工作的最大结温。通常锗管为75~85○C,硅管为125~175○C。

2.3.2 在电路设计中晶体三极管的电气特性具有重要作用

晶体三极管的电气特性表示三极管的性质,成为使三极管在最为有效的良好状态下工作的设计标准(参照表2.4)。

集电极截止电流ICBO
如图2.15所示,若在集电极-基极间加上反向电压,则集电极中流过极小的电流。这个电流称为集电极截止电流,该值越小的晶体三极管越好,但随着温度的上升和条件恶化,该值会变大。

(b) 直流电流放大系数hFE

如前所述,在直流情况下对应于基极电流的变化集电极电流变化的比率称为直流电流放大倍数。如果hFE的值在50以上,就可实际应用,但如图2.16所示由于受集电极电流和周围温度影响, hFE发生变化,所以规格表中记录的必定是测量值。

(c) 特征频率fT

是交流电流放大倍数hfe变为1时的频率,表征晶体三极管的高频特性(参照图2.17)。

(d)集电极输出电容Cob

表示集电极和基极间的静电电容,该值大的晶体三极管,由于在高频时放大倍数下降,所以不适合用于高频。

(e) 噪声指数NF

是输出信号和输入信号中的噪声之比,越是对小信号进行放大的电路,越是要使用该值小的晶体三极管。

用万用表检测晶体三极管的好坏
如图2.9(a)、(b)所示,可以将发射极与基极间看作为一个pn结二极管,基极与集电极间看作为另一个pn结二极管,这两个二极管为背靠背串联连接。

因此,E、B间及B、C间若没有短路,则三极管就是正常的(参照同图(c))。

用静态特性描述晶体三极管的伏-安特性
我们虽然已经学习了有关晶体三极管的电压施加方法和管内电流的结构组成,但是在使用时还必须知道施加多大的电压会有多大的电流流通。这里,表征这一伏-安行特性的曲线就是晶体三极管的静态特性。

只要把晶体三极管插入夹在称为示波器的仪器上(参照图2.18),晶体三极管的静态特性就能立刻在显象管上描绘出来,也可以如图2.20所示,利用电压、电流表进行测定。同图中,发射极是与基极和集电极及电源的公共连接点(称为共发射极电路),该电路用于测定VBE、VCE两个电压和IB、IC两个电流。

因此,可以画出四条特性曲线,但由于VCE-VBE曲线几乎很少使用而常常省略,故主要使用下面三条曲线。

VBE-IB特性曲线(输入特性)
保持VCE不变时的VBE和IB的关系(参照图2.21)。但是,因为该特性不大随VCE而变,所以通常VCE数伏才用一条特性曲线表示。

(b)VCE-IC特性曲线(输出特性)

保持IB不变时的VCE和IC的关系(参照图2.22)。

(c) IB-IC特性曲线

保持VCE不变时的IB和IC的关系。但是,VCE与在VBE-IB特性曲线中的情况一样,数伏特为一格(参照图示2.19)。

本章小结

晶体三极管的结构和电路符号以及IB、IC、IE之间的关系

直流电流放大倍数hFE

集电极直流电流IC与基极直流电流IB之比:hFE=IC/IB

对晶体三极管施加电压的方法

在基极-发射极间加上正向电压,集电极-发射极间加上反向电压。

晶体三极管的极限参数

使用晶体三极管时,必须不超过如下的极限参数。集电极-基极间电压VCBO,集电极-发射极间电压VCEO,发射极-基极间电压VEBO,集电极电流IC,集电极功耗PC(PC=ICVCE),pn结温度Tj。

晶体三极管的静态特性

是晶体三极管的伏-安特性的曲线图表示,常使用的特性曲线有以上三种:VBE-IB(输入)特性曲线;VCE-IC(输出)特性曲线;IB-IC特性曲线。

三极管作为放大电路有三种接法:1、共发射极接法,发射极接地,信号由基极进入,放大后的信号由集电极输出;2、共集电极接法,信号由基极进入,放大后的信号由发射极输出;3、共基极接法,基极(交流)接地,信号由发射极进入,放大后的信号由集电极输出。
你看到的这个电路,就是共基极放大电路。

首先三极管有三个极,分别是基极B,集电极C,发射极E。
以NPN三极管为例,集电极电流
Ice和基极电流
Ibe是有关系的。
你不用想的太复杂,三极管的原理其实很简单,就是下面我一句话。
三极管的基极电流
Ibe越大集电极电流
Ice也越大。
也就是说三极管的集电极电流
Ice是随着基极电流
Ibe增大而增大的。
增大的多少跟三极管的放大培数有关。
详细一点你可以看看三极管的特性曲线,看懂了三极管的特性曲线你就都明白了。

箭头方向总是从P结指向N的
三极管不仅可以做放大,还有别的用处
比如做镜像电流源,做混频器(此时基极,射极或集电极都有信号输入),或者连成二极管使用,这些是基本的功能,要能从连接方式看出其基本功能,初学者可以从分析它的工作区域(正向放大,饱和,截止,反向)开始。
TTL电路中,都是用若干三极管构成基本单元电路,把基本的与或非形式弄清楚就可以分析复杂功能了

不可能吧,你可能搞错了


19285639639三极管的工作原理?
酆咱终答:三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。一、电流放大 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极...

19285639639三极管的原理和应用
酆咱终答:三极管实际就是把两个二极管同极相连。它是电流控制元件,利用基区窄小的特殊结构,通过载流子的扩散和复合,实现了基极电流对集电极电流的控制,使三极管有更强的控制能力。按照内部结构来区分,可以把三极管分为PNP管和NPN管,两只管按照一定的方式连接起来,就可以组成对管,具有更强的工作能力。如果按照...

19285639639我想知道三极管的工作原理 就是电子在里面的走向 最好给我些比喻之类...
酆咱终答:三极管放大原理跟PN结是模电最基础也是最重要的内容之一,是课程难点之一,但一定要理解,否则后面会很累很累。以NPN三极管为例:在BE间和BC间各有一个PN结,PN结当加正向偏之电压时,PN结之间的内电场(方向从N指向P)会被压制,自由电子会在内电场作用下往P极移动,形成从P到N的电流(电流方向是...

19285639639三极管放大原理是什么?它究竟放大了什么?
酆咱终答:这就是三级管电流走向。放大原理:因为基极空穴较少,所以发射极电子被集电极电场吸引进入集电极过程与基极空穴复合概率较小,当基极电流增大(空穴增多)时,因为电子与基极空穴复合概率较小,所以,基极电流稍微增大一点,就需要很多的电子才能与基极增多一点的空穴复合,因此,基极电流变化一点,而引起发射极...

19285639639三级管B857
酆咱终答:极管的工作原理 三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之...

19285639639三极管的工作原理是什么
酆咱终答:三极管工作原理:通过输入小的交流电,控制大的静态直流电。具体原理:三极管可以不断地监视,流过基极与发射极之间的电流,并可以控制集电极-发射极间电流源,使十到数百倍的基极-发射极间的电流,在集电极与发射极之间流动。也就是说,集电极-发射极电流,是晶体管用基极电流来控制的。

19285639639能否详细说一说2极管和3极管的工作原理?
酆咱终答:三极管的工作原理 三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反...

192856396393极管的作用和工作原理
酆咱终答:三极管的工作原理是通过控制基极电流来影响集电极和发射极之间的电流,从而实现放大和开关功能。当在基极施加一个小电流时,空穴或电子会从发射极扩散到基极,形成基极电流。这些载流子在基极中会被电场加速并扩散到集电极,形成集电极和发射极之间的连通通道,进而形成集电极和发射极之间的电流增益,用于信号放...

19285639639三极管的用途和原理
酆咱终答:三极管由两个半导体PN结构成,三极管的三个极分别为发射极(E*、基极(B* 、集电极(C。三极管有多种用途,可以组成放大电路、稳压电路、振荡电路、开关电路等。放大电路三极管可以把电子信号放大,这种三极管的电路叫放大电路。在共发射极放大电路中,基极电流小量的变化能引起集电极电流大的变化,从而能起到信号放大的...

19285639639三极管放大电路的基本原理是什么?
酆咱终答:放大电路是利用具有放大特性的电子元件,如晶体三极管,三极管加上工作电压后,输入端的微小电流变化可以引起输出端较大电流的变化,输出端的变化要比输入端的变化大几倍到几百倍,这就是放大电路的基本原理。计算三极管的电流和极间电压值,应采用直流通路(电容开路)。基极电流:IB=IBQ=(VCC-VBEQ)/Rb 集...


(编辑:林狡琰)
联系方式:
关于我们 | 客户服务 | 服务条款 | 联系我们 | 免责声明 | 网站地图
@ 作文摘要网